Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Gastroenterol Clin North Am ; 52(1): 1-11, 2023 03.
Article in English | MEDLINE | ID: covidwho-2271952

ABSTRACT

The gastrointestinal (GI) tract is targeted by severe acute respiratory syndrome coronavirus-2. The present review examines GI involvement in patients with long coronavirus disease and discusses the underlying pathophysiological mechanisms that include viral persistence, mucosal and systemic immune dysregulation, microbial dysbiosis, insulin resistance, and metabolic abnormalities. Due to the complex and potentially multifactorial nature of this syndrome, rigorous clinical definitions and pathophysiology-based therapeutic approaches are warranted.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Humans , SARS-CoV-2 , Gastrointestinal Tract , Liver , Dysbiosis
2.
Gastroenterology clinics of North America ; 2022.
Article in English | EuropePMC | ID: covidwho-2147493

ABSTRACT

Synopsis The gastrointestinal tract (GI) is targeted by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The present review examines GI involvement in patients with long COVID and discusses the underlying pathophysiological mechanisms that include viral persistence, mucosal and systemic immune dysregulation, microbial dysbiosis, insulin resistance and metabolic abnormalities. Due to the complex and potentially multifactorial nature of this syndrome, rigorous clinical definitions and pathophysiology-based therapeutic approaches are warranted.

4.
Nat Rev Gastroenterol Hepatol ; 19(6): 345-346, 2022 06.
Article in English | MEDLINE | ID: covidwho-1778603
5.
Nat Immunol ; 23(2): 194-202, 2022 02.
Article in English | MEDLINE | ID: covidwho-1671599

ABSTRACT

The world continues to contend with successive waves of coronavirus disease 2019 (COVID-19), fueled by the emergence of viral variants. At the same time, persistent, prolonged and often debilitating sequelae are increasingly recognized in convalescent individuals, named 'post-COVID-19 syndrome' or 'long-haul COVID'. Clinical symptomatology includes fatigue, malaise, dyspnea, defects in memory and concentration and a variety of neuropsychiatric syndromes as the major manifestations, and several organ systems can be involved. The underlying pathophysiological mechanisms are poorly understood at present. This Review details organ-specific sequelae of post-COVID-19 syndromes and examines the underlying pathophysiological mechanisms available so far, elaborating on persistent inflammation, induced autoimmunity and putative viral reservoirs. Finally, we propose diagnostic strategies to better understand this heterogeneous disorder that continues to afflict millions of people worldwide.


Subject(s)
COVID-19/complications , SARS-CoV-2/pathogenicity , COVID-19/immunology , COVID-19/physiopathology , COVID-19/virology , Host-Pathogen Interactions , Humans , Prognosis , SARS-CoV-2/immunology , Symptom Assessment , Time Factors , Post-Acute COVID-19 Syndrome
7.
Sci Rep ; 11(1): 13308, 2021 06 25.
Article in English | MEDLINE | ID: covidwho-1281741

ABSTRACT

Gastrointestinal symptoms are common in COVID-19 patients but the nature of the gut immune response to SARS-CoV-2 remains poorly characterized, partly due to the difficulty of obtaining biopsy specimens from infected individuals. In lieu of tissue samples, we measured cytokines, inflammatory markers, viral RNA, microbiome composition, and antibody responses in stool samples from a cohort of 44 hospitalized COVID-19 patients. SARS-CoV-2 RNA was detected in stool of 41% of patients and more frequently in patients with diarrhea. Patients who survived had lower fecal viral RNA than those who died. Strains isolated from stool and nasopharynx of an individual were the same. Compared to uninfected controls, COVID-19 patients had higher fecal levels of IL-8 and lower levels of fecal IL-10. Stool IL-23 was higher in patients with more severe COVID-19 disease, and we found evidence of intestinal virus-specific IgA responses associated with more severe disease. We provide evidence for an ongoing humeral immune response to SARS-CoV-2 in the gastrointestinal tract, but little evidence of overt inflammation.


Subject(s)
COVID-19 , Feces , Gastrointestinal Microbiome , Nasopharynx/virology , RNA, Viral/isolation & purification , Aged , Biomarkers/metabolism , COVID-19/epidemiology , COVID-19/immunology , Cohort Studies , Cytokines/metabolism , Feces/virology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Male , Middle Aged , New York City/epidemiology , SARS-CoV-2/isolation & purification
8.
Nature ; 591(7851): 639-644, 2021 03.
Article in English | MEDLINE | ID: covidwho-1065898

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected 78 million individuals and is responsible for over 1.7 million deaths to date. Infection is associated with the development of variable levels of antibodies with neutralizing activity, which can protect against infection in animal models1,2. Antibody levels decrease with time, but, to our knowledge, the nature and quality of the memory B cells that would be required to produce antibodies upon reinfection has not been examined. Here we report on the humoral memory response in a cohort of 87 individuals assessed at 1.3 and 6.2 months after infection with SARS-CoV-2. We find that titres of IgM and IgG antibodies against the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 decrease significantly over this time period, with IgA being less affected. Concurrently, neutralizing activity in plasma decreases by fivefold in pseudotype virus assays. By contrast, the number of RBD-specific memory B cells remains unchanged at 6.2 months after infection. Memory B cells display clonal turnover after 6.2 months, and the antibodies that they express have greater somatic hypermutation, resistance to RBD mutations and increased potency, indicative of continued evolution of the humoral response. Immunofluorescence and PCR analyses of intestinal biopsies obtained from asymptomatic individuals at 4 months after the onset of coronavirus disease 2019 (COVID-19) revealed the persistence of SARS-CoV-2 nucleic acids and immunoreactivity in the small bowel of 7 out of 14 individuals. We conclude that the memory B cell response to SARS-CoV-2 evolves between 1.3 and 6.2 months after infection in a manner that is consistent with antigen persistence.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Immunity, Humoral/immunology , SARS-CoV-2/immunology , Adolescent , Adult , Aged , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/genetics , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Biopsy , COVID-19/blood , Cohort Studies , Fluorescent Antibody Technique , Humans , Immunity, Humoral/genetics , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Immunologic Memory/immunology , Intestines/immunology , Middle Aged , Mutation , Somatic Hypermutation, Immunoglobulin , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Young Adult
9.
Clin Infect Dis ; 71(11): 2933-2938, 2020 12 31.
Article in English | MEDLINE | ID: covidwho-1003539

ABSTRACT

BACKGROUND: There are limited data regarding the clinical impact of coronavirus disease 2019 (COVID-19) on people living with human immunodeficiency virus (PLWH). In this study, we compared outcomes for PLWH with COVID-19 to a matched comparison group. METHODS: We identified 88 PLWH hospitalized with laboratory-confirmed COVID-19 in our hospital system in New York City between 12 March and 23 April 2020. We collected data on baseline clinical characteristics, laboratory values, HIV status, treatment, and outcomes from this group and matched comparators (1 PLWH to up to 5 patients by age, sex, race/ethnicity, and calendar week of infection). We compared clinical characteristics and outcomes (death, mechanical ventilation, hospital discharge) for these groups, as well as cumulative incidence of death by HIV status. RESULTS: Patients did not differ significantly by HIV status by age, sex, or race/ethnicity due to the matching algorithm. PLWH hospitalized with COVID-19 had high proportions of HIV virologic control on antiretroviral therapy. PLWH had greater proportions of smoking (P < .001) and comorbid illness than uninfected comparators. There was no difference in COVID-19 severity on admission by HIV status (P = .15). Poor outcomes for hospitalized PLWH were frequent but similar to proportions in comparators; 18% required mechanical ventilation and 21% died during follow-up (compared with 23% and 20%, respectively). There was similar cumulative incidence of death over time by HIV status (P = .94). CONCLUSIONS: We found no differences in adverse outcomes associated with HIV infection for hospitalized COVID-19 patients compared with a demographically similar patient group.


Subject(s)
COVID-19 , Coronavirus , HIV Infections , COVID-19/mortality , COVID-19/therapy , HIV , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Humans , New York City/epidemiology , Patient Discharge , Respiration, Artificial , SARS-CoV-2 , Treatment Outcome
10.
medRxiv ; 2020 Nov 11.
Article in English | MEDLINE | ID: covidwho-955724

ABSTRACT

Given that gastrointestinal (GI) symptoms are a prominent extrapulmonary manifestation of coronavirus disease 2019 (COVID-19), we investigated intestinal infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its effect on disease pathogenesis. SARS-CoV-2 was detected in small intestinal enterocytes by immunofluorescence staining or electron microscopy, in 13 of 15 patients studied. High dimensional analyses of GI tissues revealed low levels of inflammation in general, including active downregulation of key inflammatory genes such as IFNG, CXCL8, CXCL2 and IL1B and reduced frequencies of proinflammatory dendritic cell subsets. To evaluate the clinical significance of these findings, examination of two large, independent cohorts of hospitalized patients in the United States and Europe revealed a significant reduction in disease severity and mortality that was independent of gender, age, and examined co-morbid illnesses. The observed mortality reduction in COVID-19 patients with GI symptoms was associated with reduced levels of key inflammatory proteins including IL-6, CXCL8, IL-17A and CCL28 in circulation but was not associated with significant differences in nasopharyngeal viral loads. These data draw attention to organ-level heterogeneity in disease pathogenesis and highlight the role of the GI tract in attenuating SARS-CoV-2-associated inflammation with related mortality benefit. ONE SENTENCE SUMMARY: Intestinal infection with SARS-CoV-2 is associated with a mild inflammatory response and improved clinical outcomes.

11.
Gastroenterology ; 160(1): 287-301.e20, 2021 01.
Article in English | MEDLINE | ID: covidwho-796100

ABSTRACT

BACKGROUND AND AIMS: The presence of gastrointestinal symptoms and high levels of viral RNA in the stool suggest active severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication within enterocytes. METHODS: Here, in multiple, large cohorts of patients with inflammatory bowel disease (IBD), we have studied the intersections between Coronavirus Disease 2019 (COVID-19), intestinal inflammation, and IBD treatment. RESULTS: A striking expression of ACE2 on the small bowel enterocyte brush border supports intestinal infectivity by SARS-CoV-2. Commonly used IBD medications, both biologic and nonbiologic, do not significantly impact ACE2 and TMPRSS2 receptor expression in the uninflamed intestines. In addition, we have defined molecular responses to COVID-19 infection that are also enriched in IBD, pointing to shared molecular networks between COVID-19 and IBD. CONCLUSIONS: These data generate a novel appreciation of the confluence of COVID-19- and IBD-associated inflammation and provide mechanistic insights supporting further investigation of specific IBD drugs in the treatment of COVID-19. Preprint doi: https://doi.org/10.1101/2020.05.21.109124.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , Inflammatory Bowel Diseases/enzymology , Intestinal Mucosa/enzymology , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/virology , Case-Control Studies , Clinical Trials as Topic , Cross-Sectional Studies , Disease Models, Animal , Female , Gene Regulatory Networks , Host-Pathogen Interactions , Humans , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/genetics , Intestinal Mucosa/drug effects , Intestinal Mucosa/virology , Longitudinal Studies , Male , Mice , SARS-CoV-2/drug effects , Serine Endopeptidases/genetics , Signal Transduction , COVID-19 Drug Treatment
12.
Immunity ; 52(6): 910-941, 2020 06 16.
Article in English | MEDLINE | ID: covidwho-599508

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has affected millions of people worldwide, igniting an unprecedented effort from the scientific community to understand the biological underpinning of COVID19 pathophysiology. In this Review, we summarize the current state of knowledge of innate and adaptive immune responses elicited by SARS-CoV-2 infection and the immunological pathways that likely contribute to disease severity and death. We also discuss the rationale and clinical outcome of current therapeutic strategies as well as prospective clinical trials to prevent or treat SARS-CoV-2 infection.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Animals , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Coronavirus Infections/therapy , Disease Susceptibility , Humans , Immunity, Innate , Immunologic Memory , Inflammation/immunology , Inflammation/virology , Lymphocytes/immunology , Myeloid Cells/immunology , Pandemics , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Pneumonia, Viral/therapy , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL